AskDefine | Define iodine

Dictionary Definition

iodine

Noun

1 a nonmetallic element belonging to the halogens; used especially in medicine and photography and in dyes; occurs naturally only in combination in small quantities (as in sea water or rocks) [syn: iodin, I, atomic number 53]
2 a tincture consisting of a solution of iodine in ethyl alcohol; applied topically to wounds as an antiseptic [syn: tincture of iodine]

User Contributed Dictionary

English

Pronunciation

Noun

  1. A chemical element (symbol: I) with an atomic number of 53; one of the halogens.
  2. An antiseptic, also called tincture of iodine.

Usage notes

Note that the chemical symbol J (not I) is sometimes used in German chemistry texts.

Translations

element
antiseptic

External links

For etymology and more information refer to: http://elements.vanderkrogt.net/elem/i.html (A lot of the translations were taken from that site with permission from the author)

Extensive Definition

Iodine (, or /ˈaɪədiːn/; from "violet"), is a chemical element that has the symbol I and atomic number 53. Naturally-occurring iodine is a single isotope with 74 neutrons.
Chemically, iodine is the least reactive of the halogens, and the most electropositive halogen after astatine. However, the element does not occur in the free state in nature. As with all other halogens (members of Group VII in the Periodic Table), when freed from its compounds iodine forms diatomic molecules (I2).
Iodine and its compounds are primarily used in medicine, photography and in dyes. Although it is rare in the solar system and Earth's crust, the iodides are very soluble in water, and the element is concentrated in seawater. This mechanism helps to explain how the element came to be required in trace amounts by all animals and some plants, being by far the heaviest element known to be necessary to living organisms.

Properties

Iodine under standard conditions is a dark-purple/dark-brown solid. It can be seen apparently subliming at standard temperatures into a violet-pink gas that has an irritating odor. This halogen forms compounds with many elements, but is less reactive than the other members of its Group VII (halogens) and has some metallic light reflectance.
Elemental iodine dissolves easily in chloroform and carbon tetrachloride. The solubility of elementary iodine in water can be vastly increased by the addition of potassium iodide. The molecular iodine reacts reversibly with the negative ion, creating the triiodide anion, I3−, which dissolves well in water. This is also the formulation of some types of medicinal (antiseptic) iodine, although tincture of iodine classically dissolves the element in alcohol. The deep blue color of starch-iodine complexes is produced only by the free element.
Students who have seen the classroom demonstration in which iodine crystals are gently heated in a test tube to violet vapor, may gain the impression that liquid iodine does not exist at atmospheric pressure. This misconception arises because the small amount of vapor produced has such a deep colour that the liquid appears not to form. In fact, if iodine crystals are heated carefully to just above their melting point of 113.7 °C, the crystals melt into a liquid which is present under a dense blanket of the vapor.

History

Iodine was discovered by Bernard Courtois in 1811. He was born to a manufacturer of saltpeter (a vital part of gunpowder). At the time of the Napoleonic Wars, France was at war and saltpeter was in great demand. Saltpeter produced from French niter beds required sodium carbonate, which could be isolated from seaweed washed up on the coasts of Normandy and Brittany. To isolate the sodium carbonate, seaweed was burned and the ash then washed with water. The remaining waste was destroyed by adding sulfuric acid. One day Courtois added too much sulfuric acid and a cloud of purple vapor rose. Courtois noted that the vapor crystallized on cold surfaces making dark crystals. Courtois suspected that this was a new element but lacked the money to pursue his observations.
However he gave samples to his friends, Charles Bernard Desormes (1777 - 1862) and Nicolas Clément (1779 - 1841), to continue research. He also gave some of the substance to Joseph Louis Gay-Lussac (1778 - 1850), a well-known chemist at that time, and to André-Marie Ampère (1775 - 1836). On 29 November 1813, Dersormes and Clément made public Courtois’ discovery. They described the substance to a meeting of the Imperial Institute of France. On December 6, Gay-Lussac announced that the new substance was either an element or a compound of oxygen. Ampère had given some of his sample to Humphry Davy (1778 - 1829). Davy did some experiments on the substance and noted its similarity to chlorine. Davy sent a letter dated December 10 to the Royal Society of London stating that he had identified a new element. A large argument erupted between Davy and Gay-Lussac over who identified iodine first but both scientists acknowledged Courtois as the first to isolate the chemical element.

Applications

Iodine is used in pharmaceuticals, antiseptics, medicine, food supplements, dyes, catalysts, halogen lights, photography, water purifying, and starch detection.
  • Tincture of iodine (10% elemental iodine in ethanol base) is an essential component of any emergency survival kit, used both to disinfect wounds and to sanitize surface water for drinking (3 drops per litre, let stand for 30 minutes). Alcohol-free iodine solutions such as Lugol's iodine, as well as other iodophor type antiseptics, are also available as effective elemental iodine sources for this purpose.
  • Iodine compounds are important in the field of organic chemistry
  • Iodine, as a heavy element, is quite radio-opaque. Organic compounds of a certain type (typically iodine-substituted benzene derivatives) are thus used in medicine as X-ray radiocontrast agents for intravenous injection. This is often in conjunction with advanced X-ray techniques such as angiography and CT scanning
  • Silver iodide is used in photography.
  • Tungsten iodide is used to stabilize the filaments in light bulbs.
  • Iodine crystals are used in the process to make NI3 or nitrogen triiodide. This compound is a shock-sensitive explosive when dry. It has commonly been used for pranks, but because of its extreme touch sensitivity, is not useful commercially.

Occurrence on earth

Iodine naturally occurs in the environment chiefly as dissolved iodide in seawater, although it is also found in some minerals and soils. The element may be prepared in an ultrapure form through the reaction of potassium iodide with copper(II) sulfate. There are also a few other methods of isolating this element in the laboratory-- for example the method used to isolate other halogens: oxidation of the iodide in hydroiodic acid (often made in situ with an iodide and sulfuric acid) by manganese dioxide (see below in Descriptive chemistry). Although the element is actually quite rare, kelp and certain plants and algae have some ability to concentrate iodine, which helps introduce the element into the food chain.

Sources

Iodine is found in the mineral caliche, found in Chile, between the Andes and the sea. It can also be found in some seaweeds as well as extracted from seawater.
Extraction from seawater involves electrolysis. The brine is first purified and acidified using sulphuric acid and is then reacted with chlorine. An iodine solution is produced but it is yet too dilute and has to be concentrated. To do this air is blown into the solution which causes the iodine to evaporate, then it is passed into an absorbing tower containing acid where sulfur dioxide is added to reduce the iodine. The solution is then added to chlorine again to concentrate the solution more, and the final solution is at a level of about 99%.
Another source is from kelp. This source was used in the 18th and 19th centuries but is no longer economically viable.
In 2005, Chile was the top producer of iodine with almost two-thirds world share followed by Japan and the USA, reports the British Geological Survey.

Descriptive chemistry

Elemental iodine is poorly soluble in water, with one gram dissolving in 3450 ml at 20 °C and 1280 ml at 50 °C. By contrast with chlorine, the formation of the hypohalite ion (IO–) in neutral aqueous solutions of iodine is negligible.
I2+ H2O ↔ H+ + I– + HIO   (K = 2.0×10−13)
Solubility in water is greatly improved if the solution contains dissolved iodides such as hydroiodic acid, potassium iodide, or sodium iodide; this extra solubility results from the high solubility of the I3- ion. Dissolved bromides also improve water solubility of iodine. Iodine is soluble in a number of organic solvents, including ethanol (20.5 g/100 ml at 15 °C, 21.43 g/100 ml at 25 °C), diethyl ether (20.6 g/100 ml at 17 °C, 25.20 g/100 ml at 25 °C), chloroform, acetic acid, glycerol, benzene (14.09 g/100 ml at 25 °C), carbon tetrachloride (2.603 g/100 ml at 35 °C), and carbon disulfide (16.47 g/100 ml at 25 °C). Aqueous and ethanol solutions are brown. Solutions in chloroform, carbon tetrachloride, and carbon disulfide are violet.
Elemental iodine can be prepared by oxidizing iodides with chlorine:
2I– + Cl2 → I2 + 2Cl–
or with manganese dioxide in acid solution:
I2 + H2S → 2HI + S↓
or by hydrazine:
2I2 + N2H4 → 4HI + N2
Iodine is oxidized to iodate by nitric acid:
I2 + 10HNO3 → 2HIO3 + 10NO2 + 4H2O
or by chlorates: This is necessary for proper production of thyroid hormone. Natural sources of iodine include sea life, such as kelp and certain seafood, as well as plants grown on iodine-rich soil. Salt for human consumption is often fortified with iodine and is referred to as iodized salt.

Iodine deficiency

In areas where there is little iodine in the diet—typically remote inland areas and semi-arid equatorial climates where no marine foods are eaten—iodine deficiency gives rise to hypothyroidism, symptoms of which are extreme fatigue, goitre, mental slowing, depression, weight gain, and low basal body temperatures.
Iodine deficiency is also the leading cause of preventable mental retardation, an effect which happens primarily when babies and small children are made hypothyroid by lack of the element. The addition of iodine to table salt has largely eliminated this problem in the wealthier nations, but as of March 2006, iodine deficiency remained a serious public health problem in the developing world.

Radioiodine and biology

Radioiodine and the thyroid

Human exposure to radioactive iodine will cause thyroid uptake, as with all iodine, leading to elevated chances of thyroid cancer. Isotopes with shorter half-lives such as I131 present a greater risk than those with longer half-lives since they generate more radiation per unit of time. Taking large amounts of regular iodine will saturate the thyroid and prevent uptake. Iodine pills are sometimes distributed to persons living close to nuclear establishments, for use in case of accidents that could lead to releases of radioactive iodine.
  • Iodine-123 and iodine-125 are used in medicine as tracers for imaging and evaluating the function of the thyroid.
  • Uncombined (elemental) iodine is mildly toxic to all living things.
The artificial radioisotope 131I (a beta emitter), has a half-life of 8.0207 days. Also known as radioiodine, 131I has been used in treating cancer and other pathologies of the thyroid glands. 123I is the radioisotope most often used in nuclear imaging of the kidney and thyroid as well as thyroid uptake scans (used for the evaluation of Graves' Disease). The most common compounds of iodine are the iodides of sodium and potassium (KI) and the iodates (KIO3).
Potassium iodide (KI tablets, or "SSKI" = "Saturated Solution of KI" liquid drops) can be given to people in a nuclear disaster area when fission has taken place, to block the uptake of iodine-131 by the thyroid. The protective effect of KI lasts approximately 24 hours, so it should be dosed daily until a risk of significant exposure to radioiodines no longer exists. The exposure can be reduced by evacuation, sheltering, and by control of the food supply. Iodine-131 also decays rapidly, with a half-life of 8 days, so that 99.95% of the original radioiodine is gone after three months.
Iodine-129 129I (half-life 15.7 million years) is a product of cosmic ray spallation on various isotopes of xenon in the atmosphere, in cosmic ray muon interaction with tellurium-130, and also and uranium and plutonium fission, both in subsurface rocks and nuclear reactors. Nuclear processes, in particular nuclear fuel reprocessing and atmospheric nuclear weapons tests have now swamped the natural signal for this isotope. 129I was used in rainwater studies following the Chernobyl accident. It also has been used as a ground-water tracer and as an indicator of nuclear waste dispersion into the natural environment.

Radioiodine and the kidney

In the 1970s imaging techniques were developed in California to utilize radioiodine in diagnostics for renal hypertension.

Isotopes

There are 37 isotopes of iodine and only one, 127I, is stable.
In many ways, 129I is similar to 36Cl. It is a soluble halogen, fairly non-reactive, exists mainly as a non-sorbing anion, and is produced by cosmogenic, thermonuclear, and in-situ reactions. In hydrologic studies, 129I concentrations are usually reported as the ratio of 129I to total I (which is virtually all 127I). As is the case with 36Cl/Cl, 129I/I ratios in nature are quite small, 10−14 to 10−10 (peak thermonuclear 129I/I during the 1960s and 1970s reached about 10−7). 129I differs from 36Cl in that its half-life is longer (15.7 vs. 0.301 million years), it is highly biophilic, and occurs in multiple ionic forms (commonly, I− and IO3−) which have different chemical behaviors. This makes it fairly easy for 129I to enter the biosphere as it becomes incorporated into vegetation, soil, milk, animal tissue, etc.
Excesses of stable 129Xe in meteorites have been shown to result from decay of "primordial" Iodine-129 produced newly by the supernovas which created the dust and gas from which the solar system formed. 129I was the first extinct radionuclide to be identified as present in the early solar system. Its decay is the basis of the I-Xe Iodine-xenon radiometric dating scheme, which covers the first 83 million years of solar system evolution.
Effects of various radioiodine isotopes in biology are discussed above.

Toxicity of iodine

Excess iodine has symptoms similar to those of iodine deficiency. Commonly encountered symptoms are abnormal growth of the thyroid gland and disorders in functioning and growth of the organism as a whole. Elemental iodine, I2, is a deadly poison if taken in larger amounts; if 2-3 grams of it is consumed, it is fatal to humans. Iodides are similar in toxicity to bromides.

Precautions for stable iodine

Direct contact with skin can cause lesions, so it should be handled with care. Iodine vapor is very irritating to the eye and to mucous membranes. Concentration of iodine in the air should not exceed 1 mg/ (eight-hour time-weighted average). When mixed with ammonia, it can form nitrogen triiodide which is extremely sensitive and can explode unexpectedly.

Clandestine use

In the United States, the Drug Enforcement Agency (DEA) regards iodine and compounds containing iodine (ionic iodides, iodoform, ethyl iodide, and so on) as reagents useful for the clandestine manufacture of methamphetamine. Persons who attempt to purchase significant quantities of such chemicals without establishing a legitimate use are likely to find themselves the target of a DEA investigation. Persons selling such compounds without doing due diligence to establish that the materials are not being diverted to clandestine use may be subject to stiff penalties, such as expensive fines or even imprisonment.
iodine in Afrikaans: Jodium
iodine in Arabic: يود
iodine in Bengali: আয়োডিন
iodine in Belarusian: Ёд
iodine in Bosnian: Jod
iodine in Bulgarian: Йод
iodine in Catalan: Iode
iodine in Chuvash: Иод
iodine in Czech: Jód
iodine in Corsican: Iodiu
iodine in Danish: Jod
iodine in German: Iod
iodine in Estonian: Jood
iodine in Modern Greek (1453-): Ιώδιο
iodine in Spanish: Yodo
iodine in Esperanto: Jodo
iodine in Basque: Iodo
iodine in Persian: ید
iodine in French: Iode
iodine in Friulian: Jodi
iodine in Irish: Iaidín
iodine in Manx: Eeadeen
iodine in Galician: Iodo
iodine in Korean: 아이오딘
iodine in Armenian: Յոդ
iodine in Croatian: Jod
iodine in Ido: Iodo
iodine in Indonesian: Yodium
iodine in Icelandic: Joð
iodine in Italian: Iodio
iodine in Hebrew: יוד
iodine in Javanese: Yodium
iodine in Swahili (macrolanguage): Iodini
iodine in Haitian: Yòd
iodine in Latin: Iodium
iodine in Latvian: Jods (elements)
iodine in Luxembourgish: Iod
iodine in Lithuanian: Jodas
iodine in Lojban: zirkliru
iodine in Hungarian: Jód
iodine in Macedonian: Јод
iodine in Malayalam: അയോഡിന്‍
iodine in Marathi: आयोडिन
iodine in Dutch: Jodium
iodine in Japanese: ヨウ素
iodine in Norwegian: Jod
iodine in Norwegian Nynorsk: Jod
iodine in Occitan (post 1500): Iòde
iodine in Uzbek: Yod
iodine in Low German: Jod
iodine in Polish: Jod
iodine in Portuguese: Iodo
iodine in Romanian: Iod
iodine in Quechua: Yudu
iodine in Russian: Иод
iodine in Albanian: Jodi
iodine in Sicilian: Iodiu
iodine in Simple English: Iodine
iodine in Slovak: Jód
iodine in Slovenian: Jod
iodine in Serbian: Јод
iodine in Serbo-Croatian: Jod
iodine in Finnish: Jodi
iodine in Swedish: Jod
iodine in Tamil: அயோடின்
iodine in Thai: ไอโอดีน
iodine in Vietnamese: Iốt
iodine in Tajik: Йод
iodine in Turkish: İyot
iodine in Ukrainian: Йод
iodine in Contenese: 碘
iodine in Chinese: 碘

Synonyms, Antonyms and Related Words

Argyrol, Mercurochrome, Merthiolate, Salol, alcohol, boric acid, calomel, camphor, carbolic acid, chloramine, cresol, gentian violet, gramicidin, hexachloraphene, hydrogen peroxide, peroxide, phenol, phenyl salicylate, resorcinol, silver vitellin, thimerosal, thymol, tincture of iodine
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1